Innovative Traffic Data Collection: An Analysis of Potential Uses in Florida

Mike Akridge, ITS Administrator, CVO/ETC, ITS Office Florida DOT May 13, 2002 – Non-Traditional Data Sources (Session B3)

Outline of Presentation

- Background of Traffic Data Collection
- Technologies Reviewed
- Recommendations
- Transponder Data Field Test

Background

- Traditional data collection
 - "Point sensing" samples all vehicles at a certain location
 - Parameters:
 - Volume, occupancy, vehicle classification
 - Often vehicle speed
- Probe data collection
 - "Link or Section Sensing" samples some vehicles, not all
 - Parameter:
 - Travel Time
- Our institutions are not used to travel-time based data

Technologies Reviewed

This analysis focuses on the following innovative data collection technologies:

- In-Vehicle Transponders
- License Plate Readers
- Cellular Probes
- Transit Automatic Vehicle Location
- Private Fleet-based Automatic Vehicle Location (AVL)
- In-Vehicle Probes Telematics

In-Vehicle Transponders

- Largest type of probe system in use in the U.S. today
- Mature area-wide systems in Houston and San Antonio
- Single facility system in Atlanta
- Evolving to area-wide in New York City
- Under development in Chicago, Massachusetts and Orlando
- Requires roadside devices to cover links
- Potential Privacy Issue

In-Vehicle Transponders (2) Status in Florida

- Approximately 700,000 SunPass and E-PASS transponders operating statewide
- Orlando-Orange County Expressway Authority (OOCEA) currently pilot testing a travel time data collection system
- Additional research to be carried out concerning the penetration of commercial vehicle electronic screening (Pre-Pass) transponders

In-Vehicle Transponders (3)

In-Vehicle Transponders (4) San Antonio -- Coverage

In-Vehicle Transponders (5) Houston Coverage

Speed Ranges (MPH)	
0-19	
20-29	
30-39	
40-49	
50+	
N/A	

In-Vehicle Transponders (6) Lessons Learned

- Accuracy
 - 2-10% vehicle penetration required
- Cost-effectiveness
 - If electronic toll collection system in region
- Challenging for regions without toll facilities
 - Could be overcome if transponders were part of the original equipment placed on vehicles

License Plate Readers

- Proven in the UK by Trafficmaster
- Currently being tested in Oregon
- Offer great promise, especially in areas with low transponder penetration

Cellular Probes

- Background
 - Wireless "enhanced" 911 is driver
 - Wireless carriers must deploy systems to locate emergency callers
 - Carriers choosing network-based or handset-based technologies
 - Some technologies could also support traffic monitoring
- Status
 - Not yet in operational use
 - Technical, privacy and driver distraction of cell phone use are possible issues being addressed

Transit Automatic Vehicle Location (AVL)

- Fleets of transit vehicles as probes for assessing travel times
- Test of AVL equipped buses in Orange County, California
 - Little correlation between real traffic speeds and estimates based on transit probe data
- No full deployments of such systems currently exist anywhere in the US

Private Fleet Automatic Vehicle Location

- Fleet management systems to approximate real-time inter-city traffic conditions
 - e.g. Qualcomm's OmniTRACS over 300,000 vehicles nationwide
- Barriers
 - Fleets own data not location provider (Qualcomm)
 - Will fleets cooperate?

In-Vehicle Probes -Telematics

- Location sensing and wireless technologies built into vehicles facilitate the collection of "probe data"
- Growing number of telematics enabled vehicles, but critical mass is likely some time off
 - OnStar ~ 2 million vehicles
- Multiple proprietary efforts may dilute vehicle penetration
 - OnStar, InfoMove, WingCast, etc.
- No substantial public sector involvement as of yet

Recommendations

- In-Vehicle Transponders
 - Deploy transponder-based system along the FIHS where sufficient penetration exists
- License Plate Readers
 - Candidate for use where transponder penetration insufficient
 - Conduct proof of concept test
- Cellular Probes
 - Driven by wireless carriers, not transportation
 - Monitor progress, but do not put on critical path

Recommendations (2)

- Transit AVL
 - Monitor progress of other transit agencies
- Private Fleet AVL
 - Share findings with ITS America, JPO, and/or ATA
 - Contact Florida Trucking Association to assess interest
- In-Vehicle Probes Telematics
 - Continue to monitor market penetration and progress

Transponder Data Field Test

- Determine:
 - Current transponder penetrations throughout Florida
 - Where transponder penetrations sufficient for travel time data collection
 - Rules of thumb for reader spacing

Transponder Data Field Test (2)

Transponder Data Field Test (3)

- Preliminary Results I-4 WB (Orlando)
 - Transponders in Traffic Stream (Exit 50)
 - Average Hourly Transponder Reads 280
 - Average Hourly Traffic Volume 1706
 - Average Penetration of Transponders 16.4%
 - Transponders in Traffic Stream (Exit 37)
 - Average Hourly Transponder Reads 472
 - Average Hourly Traffic Volume 2342
 - Average Penetration of Transponders 20.1%
 - Average Number of Matched Links/Minute ~ 1

Transponder Data Field Test (4)

- Preliminary Results I-95 SB (Ft. Lauderdale)
 - Transponders in Traffic Stream (Exit 36C)
 - Average Hourly Transponder Reads 135
 - Average Hourly Traffic Volume 1444
 - Average Penetration of Transponders 9.5%
 - Transponders in Traffic Stream (Exit 21)
 - Average Hourly Transponder Reads 83
 - Average Hourly Traffic Volume 841
 - Average Penetration of Transponders 9.9%
 - Average Number of Matched Links/Minute ~ .23

Transponder Data Field Test (5)

Travel Time Between Exits 50 and 36 on I-4 Orlando - April 16

Additional Information

 The research paper on which this presentation is based can be downloaded from:

http://www.floridaits.com/PDFs/TM1 Innovative Data Collection Analysis V1.pdf

- Contact Information
 - Mike Akridge ITS Administrator, CVO/ETC, ITS Office Florida DOT (<u>michael.akridge@dot.state.fl.us</u>)
 - Rick Schuman Manager of Traveler Information Systems, PBS&J (<u>rickschuman@pbsj.com</u>)
 - Armand Ciccarelli ITS Analyst, PBS&J (armandciccarelli@pbsj.com)

Outline of Presentation

- Background of Traffic Data Collection
- Technologies Reviewed
- Recommendations
- Transponder Data Field Test